Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466184

RESUMO

Here, we report the first characterization of the effects resulting from the manipulation of Soluble-Lamin Associated Protein (SLAP) expression during mammalian brain development. We found that SLAP localizes to the nuclear envelope and when overexpressed causes changes in nuclear morphology and lengthening of mitosis. SLAP overexpression in apical progenitors of the developing mouse brain altered asymmetric cell division, neurogenic commitment and neuronal migration ultimately resulting in unbalance in the proportion of upper, relative to deeper, neuronal layers. Several of these effects were also recapitulated upon Cas9-mediated knockdown. Ultimately, SLAP overexpression during development resulted in a reduction in subcortical projections of young mice and, notably, reduced their exploratory behavior. Our study shows the potential relevance of the previously uncharacterized nuclear envelope protein SLAP in neurodevelopmental disorders.


Assuntos
Comportamento Exploratório , Membrana Nuclear , Animais , Camundongos , Encéfalo , Laminas , Mamíferos , Proteínas de Membrana/genética
2.
EMBO J ; 42(22): e113524, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37743770

RESUMO

For decades, the mammalian hippocampus has been the focus of cellular, anatomical, behavioral, and computational studies aimed at understanding the fundamental mechanisms underlying cognition. Long recognized as the brain's seat for learning and memory, a wealth of knowledge has been accumulated on how the hippocampus processes sensory input, builds complex associations between objects, events, and space, and stores this information in the form of memories to be retrieved later in life. However, despite major efforts, our understanding of hippocampal cognitive function remains fragmentary, and models trying to explain it are continually revisited. Here, we review the literature across all above-mentioned domains and offer a new perspective by bringing attention to the most distinctive, and generally neglected, feature of the mammalian hippocampal formation, namely, the structural separability of the two blades of the dentate gyrus into "supra-pyramidal" and "infra-pyramidal". Next, we discuss recent reports supporting differential effects of adult neurogenesis in the regulation of mature granule cell activity in these two blades. We propose a model for how differences in connectivity and adult neurogenesis in the two blades can potentially provide a substrate for subtly different cognitive functions.


Assuntos
Giro Denteado , Hipocampo , Animais , Giro Denteado/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Aprendizagem , Memória/fisiologia , Neurogênese/fisiologia , Mamíferos
3.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070770

RESUMO

Communication between the nervous and immune system is crucial for development, homeostasis and response to injury. Before the onset of neurogenesis, microglia populate the central nervous system, serving as resident immune cells over the course of life. Here, we describe new roles of an uncharacterized transcript upregulated by neurogenic progenitors during mouse corticogenesis: 4931414P19Rik (hereafter named P19). Overexpression of P19 cell-extrinsically inhibited neuronal migration and acted as chemoattractant of microglial cells. Interestingly, effects on neuronal migration were found to result directly from P19 secretion by neural progenitors triggering microglia accumulation within the P19 targeted area. Our findings highlight the crucial role of microglia during brain development and identify P19 as a previously unreported player in the neuro-immune crosstalk.


Assuntos
Microglia , Neurogênese , Animais , Camundongos , Neurogênese/fisiologia , Sistema Nervoso Central , Sistema Imunitário , Movimento Celular , Encéfalo/fisiologia
4.
Neurosci Biobehav Rev ; 141: 104853, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36064146

RESUMO

The sense of smell is interrelated with psychosocial functioning. Olfactory disorders often decrease quality of life but treatment options for people with olfactory loss are limited. Additionally, olfactory loss accompanies and precedes psychiatric and neurodegenerative diseases. Regular, systematic exposure to a set of odors, i.e., olfactory training (OT) has been offered for rehabilitation of the sense of smell in clinical practice. As signals from the olfactory bulb are directly projected to the limbic system it has been also debated whether OT might benefit psychological functioning, i.e., mitigate cognitive deterioration or improve emotional processing. In this review we synthesize key findings on OT utility in the clinical practice and highlight the molecular, cellular, and neuroanatomical changes accompanying olfactory recovery in people with smell loss as well as in experimental animal models. We discuss how OT and its modifications have been used in interventions aiming to support cognitive functions and improve well-being. We delineate main methodological challenges in research on OT and suggest areas requiring further scientific attention.


Assuntos
Transtornos do Olfato , Olfato , Animais , Humanos , Odorantes , Bulbo Olfatório , Qualidade de Vida
5.
Front Neurosci ; 16: 964395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992908

RESUMO

Throughout the animal kingdom, olfaction underlies the ability to perceive chemicals in the environment as a fundamental adaptation with a plethora of functions. Unique among senses, olfaction is characterized by the integration of adult born neurons at the level of both the peripheral and central nervous systems. In fact, over the course of life, Neural Stem Cells (NSCs) reside within the peripheral Olfactory Epithelium (OE) and the brain's subventricular zone that generate Olfactory Sensory Neurons (OSNs) and interneurons of the Olfactory Bulb (OB), respectively. Despite this unique hallmark, the role(s) of adult neurogenesis in olfactory function remains elusive. Notably, while the molecular signature and lineage of both peripheral and central NSC are being described with increasing detail and resolution, conflicting evidence about the role of adult born neurons in olfactory sensitivity, discrimination and memory remains. With a currently increasing prevalence in olfactory dysfunctions due to aging populations and infections such as COVID-19, these limited and partly controversial reports highlight the need of a better understanding and more systematic study of this fascinating sensory system. Specifically, here we will address three fundamental questions: What is the role of peripheral adult neurogenesis in sustaining olfactory sensitivity? How can newborn neurons in the brain promote olfactory discrimination and/or memory? And what can we learn from fundamental studies on the biology of olfaction that can be used in the clinical treatment of olfactory dysfunctions?

6.
Cells ; 11(11)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681456

RESUMO

Successful embryonic and adult neurogenesis require proliferating neural stem and progenitor cells that are intrinsically and extrinsically guided into a neuronal fate. In turn, migration of new-born neurons underlies the complex cytoarchitecture of the brain. Proliferation and migration are therefore essential for brain development, homeostasis and function in adulthood. Among several tightly regulated processes involved in brain formation and function, recent evidence points to the nuclear envelope (NE) and NE-associated components as critical new contributors. Classically, the NE was thought to merely represent a barrier mediating selective exchange between the cytoplasm and nucleoplasm. However, research over the past two decades has highlighted more sophisticated and diverse roles for NE components in progenitor fate choice and migration of their progeny by tuning gene expression via interactions with chromatin, transcription factors and epigenetic factors. Defects in NE components lead to neurodevelopmental impairments, whereas age-related changes in NE components are proposed to influence neurodegenerative diseases. Thus, understanding the roles of NE components in brain development, maintenance and aging is likely to reveal new pathophysiological mechanisms for intervention. Here, we review recent findings for the previously underrepresented contribution of the NE in neuronal commitment and migration, and envision future avenues for investigation.


Assuntos
Neurogênese , Neurônios , Diferenciação Celular/fisiologia , Núcleo Celular , Neurogênese/genética , Neurônios/metabolismo , Membrana Nuclear/metabolismo
7.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35147187

RESUMO

Corticogenesis consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. NeuroD1, a basic helix-loop-helix (bHLH) transcription factor (TF), contributes to all of these events, but how it coordinates these independently is still unknown. Here, we demonstrate that NeuroD1 expression is accompanied by a gain of active chromatin at a large number of genomic loci. Interestingly, transcriptional activation of these loci relied on a high local density of adjacent bHLH TFs motifs, including, predominantly, Tcf12. We found that activity and expression levels of Tcf12 were high in cells with induced levels of NeuroD1 that spanned the transition of cortical progenitors from proliferative to neurogenic divisions. Moreover, Tcf12 forms a complex with NeuroD1 and co-occupies a subset of NeuroD1 target loci. This Tcf12-NeuroD1 cooperativity is essential for gaining active chromatin and targeted expression of genes involved in cell migration. By functional manipulation in vivo, we further show that Tcf12 is essential during cortical development for the correct migration of newborn neurons and, hence, for proper cortical lamination.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Movimento Celular , Córtex Cerebral/metabolismo , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
8.
Biosens Bioelectron ; 198: 113834, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34852985

RESUMO

Large-scale multi-site biosensors are essential to probe the olfactory bulb (OB) circuitry for understanding the spatiotemporal dynamics of simultaneous discharge patterns. Current ex-vivo biosensing techniques are limited to recording a small set of neurons and cannot provide an adequate resolution, which hinders revealing the fast dynamic underlying the information coding mechanisms in the OB circuit. Here, we demonstrate a novel biohybrid OB-CMOS biosensing platform to decipher the cross-scale dynamics of the OB electrogenesis and quantify the distinct neuronal coding properties. The approach with 4096-microelectrodes offers a non-invasive, label-free, bioelectrical imaging to decode simultaneous firing patterns from thousands of connected neuronal ensembles in acute OB slices. The platform can measure spontaneous and drug-induced extracellular field potential activity with substantially improved spatiotemporal resolution over conventional OB-based biosensors. Also, we employ our OB-CMOS recordings to perform multidimensional analysis to instantiate specific neurophysiological metrics underlying the olfactory spatiotemporal coding that emerged from the OB interconnected layers. Our results delineate the computational implications of large-scale activity patterns in functional olfactory processing. The systematic interplay of the experimental CMOS-base platform architecture and the high-content characterization of the olfactory circuit with various computational analyses endow significant functional interrogations of the OB information processing, high-spatiotemporal connectivity mapping, and global circuit dynamics. Thus, our study can inspire the design of advanced biomimetic olfactory-based biosensors and neuromorphic approaches for diagnostic biomarkers and drug discovery applications.


Assuntos
Técnicas Biossensoriais , Bulbo Olfatório , Microeletrodos , Neurônios , Odorantes , Olfato
9.
EMBO J ; 40(18): e107100, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34337766

RESUMO

Adult neurogenesis enables the life-long addition of functional neurons to the hippocampus and is regulated by both cell-intrinsic molecular programs and behavioral activity. De novo DNA methylation is crucial for embryonic brain development, but its role during adult hippocampal neurogenesis has remained unknown. Here, we show that de novo DNA methylation is critical for maturation and functional integration of adult-born neurons in the mouse hippocampus. Bisulfite sequencing revealed that de novo DNA methyltransferases target neuronal enhancers and gene bodies during adult hippocampal neural stem cell differentiation, to establish neuronal methylomes and facilitate transcriptional up-regulation of neuronal genes. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells did not affect proliferation or fate specification, but specifically impaired dendritic outgrowth and synaptogenesis of newborn neurons, thereby hampering their functional maturation. Consequently, abolishing de novo DNA methylation modulated activation patterns in the hippocampal circuitry and caused specific deficits in hippocampus-dependent learning and memory. Our results demonstrate that proper establishment of neuronal methylomes during adult neurogenesis is fundamental for hippocampal function.


Assuntos
Diferenciação Celular/genética , Metilação de DNA , Hipocampo/fisiologia , Neurogênese/genética , Células Piramidais/citologia , Células Piramidais/metabolismo , Animais , Células Cultivadas , Epigênese Genética , Regulação da Expressão Gênica , Camundongos
10.
Hippocampus ; 31(10): 1068-1079, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34174010

RESUMO

Adult neurogenesis in the hippocampal dentate gyrus (DG) is an extraordinary form of plasticity fundamental for cognitive flexibility. Recent evidence showed that newborn neurons differentially modulate input to the infra- and supra-pyramidal blades of the DG during the processing of spatial and contextual information, respectively. However, how this differential regulation by neurogenesis is translated into different aspects contributing cognitive flexibility is unclear. Here, we increased adult-born neurons by a genetic expansion of neural stem cells and studied their influence during navigational learning. We found that increased neurogenesis improved both memory precision and flexibility. Interestingly, each of these gains was associated with distinct subregional patterns of activity and better separation of memory representations in the DG-CA3 network. Our results highlight the role of adult-born neurons in promoting memory precision and indexing and suggests their anatomical allocation within specific DG-CA3 compartments, together contributing to cognitive flexibility.


Assuntos
Giro Denteado , Células-Tronco Neurais , Cognição/fisiologia , Giro Denteado/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia
11.
EMBO J ; 39(21): e105479, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32985705

RESUMO

Structural integrity and cellular homeostasis of the embryonic stem cell niche are critical for normal tissue development. In the telencephalic neuroepithelium, this is controlled in part by cell adhesion molecules and regulators of progenitor cell lineage, but the specific orchestration of these processes remains unknown. Here, we studied the role of microRNAs in the embryonic telencephalon as key regulators of gene expression. By using the early recombiner Rx-Cre mouse, we identify novel and critical roles of miRNAs in early brain development, demonstrating they are essential to preserve the cellular homeostasis and structural integrity of the telencephalic neuroepithelium. We show that Rx-Cre;DicerF/F mouse embryos have a severe disruption of the telencephalic apical junction belt, followed by invagination of the ventricular surface and formation of hyperproliferative rosettes. Transcriptome analyses and functional experiments in vivo show that these defects result from upregulation of Irs2 upon loss of let-7 miRNAs in an apoptosis-independent manner. Our results reveal an unprecedented relevance of miRNAs in early forebrain development, with potential mechanistic implications in pediatric brain cancer.


Assuntos
Homeostase , Proteínas Substratos do Receptor de Insulina/metabolismo , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Telencéfalo/embriologia , Telencéfalo/metabolismo , Junções Aderentes , Animais , Apoptose , Proliferação de Células , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Fator de Transcrição PAX6/metabolismo , Proteínas Repressoras/genética , Células-Tronco/metabolismo , Telencéfalo/citologia , Fatores de Transcrição/metabolismo
12.
Genes Dev ; 34(17-18): 1190-1209, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820037

RESUMO

Cerebral cortical development in mammals involves a highly complex and organized set of events including the transition of neural stem and progenitor cells (NSCs) from proliferative to differentiative divisions to generate neurons. Despite progress, the spatiotemporal regulation of this proliferation-differentiation switch during neurogenesis and the upstream epigenetic triggers remain poorly known. Here we report a cortex-specific PHD finger protein, Phf21b, which is highly expressed in the neurogenic phase of cortical development and gets induced as NSCs begin to differentiate. Depletion of Phf21b in vivo inhibited neuronal differentiation as cortical progenitors lacking Phf21b were retained in the proliferative zones and underwent faster cell cycles. Mechanistically, Phf21b targets the regulatory regions of cell cycle promoting genes by virtue of its high affinity for monomethylated H3K4. Subsequently, Phf21b recruits the lysine-specific demethylase Lsd1 and histone deacetylase Hdac2, resulting in the simultaneous removal of monomethylation from H3K4 and acetylation from H3K27, respectively. Intriguingly, mutations in the Phf21b locus associate with depression and mental retardation in humans. Taken together, these findings establish how a precisely timed spatiotemporal expression of Phf21b creates an epigenetic program that triggers neural stem cell differentiation during cortical development.


Assuntos
Diferenciação Celular/genética , Córtex Cerebral/embriologia , Epigênese Genética , Células-Tronco Neurais/citologia , Neurogênese/genética , Animais , Córtex Cerebral/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Endogâmicos C57BL
13.
Development ; 147(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32273274

RESUMO

MicroRNAs (miRNAs) are short (∼22 nt) single-stranded non-coding RNAs that regulate gene expression at the post-transcriptional level. Over recent years, many studies have extensively characterized the involvement of miRNA-mediated regulation in neurogenesis and brain development. However, a comprehensive catalog of cortical miRNAs expressed in a cell-specific manner in progenitor types of the developing mammalian cortex is still missing. Overcoming this limitation, here we exploited a double reporter mouse line previously validated by our group to allow the identification of the transcriptional signature of neurogenic commitment and provide the field with the complete atlas of miRNA expression in proliferating neural stem cells, neurogenic progenitors and newborn neurons during corticogenesis. By extending the currently known list of miRNAs expressed in the mouse brain by over twofold, our study highlights the power of cell type-specific analyses for the detection of transcripts that would otherwise be diluted out when studying bulk tissues. We further exploited our data by predicting putative miRNAs and validated the power of our approach by providing evidence for the involvement of miR-486 in brain development.


Assuntos
MicroRNAs/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Northern Blotting , Biologia Computacional/métodos , Eletroporação , Feminino , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neurogênese/genética , Neurogênese/fisiologia
15.
Cell Rep ; 30(7): 2170-2179.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075758

RESUMO

circSLC45A4 is the main RNA splice isoform produced from its genetic locus and one of the highest expressed circRNAs in the developing human frontal cortex. Knockdown of this highly conserved circRNA in a human neuroblastoma cell line is sufficient to induce spontaneous neuronal differentiation, measurable by increased expression of neuronal marker genes. Depletion of circSlc45a4 in the developing mouse cortex causes a significant reduction of the basal progenitor pool and increases the expression of neurogenic regulators. Furthermore, knockdown of circSlc45a4a induces a significant depletion of cells in the cortical plate. In addition, deconvolution of the bulk RNA-seq data with the help of single-cell RNA-seq data validates the depletion of basal progenitors and reveals an increase in Cajal-Retzius cells. In summary, we present a detailed study of a highly conserved circular RNA that is necessary to maintain the pool of neural progenitors in vitro and in vivo.


Assuntos
Encéfalo/fisiologia , Perfilação da Expressão Gênica/métodos , Neurônios/metabolismo , RNA Circular/metabolismo , Animais , Diferenciação Celular , Feminino , Humanos , Camundongos
16.
Nat Commun ; 11(1): 135, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919362

RESUMO

Functional plasticity of the brain decreases during ageing causing marked deficits in contextual learning, allocentric navigation and episodic memory. Adult neurogenesis is a prime example of hippocampal plasticity promoting the contextualisation of information and dramatically decreases during ageing. We found that a genetically-driven expansion of neural stem cells by overexpression of the cell cycle regulators Cdk4/cyclinD1 compensated the age-related decline in neurogenesis. This triggered an overall inhibitory effect on the trisynaptic hippocampal circuit resulting in a changed profile of CA1 sharp-wave ripples known to underlie memory consolidation. Most importantly, increased neurogenesis rescued the age-related switch from hippocampal to striatal learning strategies by rescuing allocentric navigation and contextual memory. Our study demonstrates that critical aspects of hippocampal function can be reversed in old age, or compensated throughout life, by exploiting the brain's endogenous reserve of neural stem cells.


Assuntos
Hipocampo/fisiologia , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Envelhecimento/fisiologia , Animais , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Feminino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
17.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30926618

RESUMO

Circular (circ) RNAs have recently emerged as a novel class of transcripts whose identification and function remain elusive. Among many tissues and species, the mammalian brain is the organ in which circRNAs are more abundant and first evidence of their functional significance started to emerge. Yet, even within this well-studied organ, annotation of circRNAs remains fragmentary, their sequence is unknown, and their expression in specific cell types was never investigated. Overcoming these limitations, here we provide the first comprehensive identification of circRNAs and assessment of their expression patterns in proliferating neural stem cells, neurogenic progenitors, and newborn neurons of the developing mouse cortex. Extending the current knowledge about the diversity of this class of transcripts by the identification of nearly 4,000 new circRNAs, our study is the first to provide the full sequence information and expression patterns of circRNAs in cell types representing the lineage of neurogenic commitment. We further exploited our data by evaluating the coding potential, evolutionary conservation, and biogenesis of circRNAs that we found to arise from a specific subclass of linear mRNAs. Our study provides the arising field of circRNA biology with a powerful new resource to address the complexity and potential biological significance of this new class of transcripts.


Assuntos
Sequência de Bases/genética , Neurogênese/genética , RNA Circular/genética , Células-Tronco/fisiologia , Transcriptoma/genética , Processamento Alternativo/genética , Animais , Sítios de Ligação , Córtex Cerebelar/citologia , Éxons/genética , Feminino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , Biossíntese de Proteínas/genética , RNA Circular/metabolismo , RNA Mensageiro/genética
18.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30814272

RESUMO

Dynamic changes in DNA (hydroxy-)methylation are fundamental for stem cell differentiation. However, the signature of these epigenetic marks in specific cell types during corticogenesis is unknown. Moreover, site-specific manipulation of cytosine modifications is needed to reveal the significance and function of these changes. Here, we report the first assessment of (hydroxy-)methylation in neural stem cells, neurogenic progenitors, and newborn neurons during mammalian corticogenesis. We found that gain in hydroxymethylation and loss in methylation occur sequentially at specific cellular transitions during neurogenic commitment. We also found that these changes predominantly occur within enhancers of neurogenic genes up-regulated during neurogenesis and target of pioneer transcription factors. We further optimized the use of dCas9-Tet1 manipulation of (hydroxy-)methylation, locus-specifically, in vivo, showing the biological relevance of our observations for Dchs1, a regulator of corticogenesis involved in developmental malformations and cognitive impairment. Together, our data reveal the dynamics of cytosine modifications in lineage-related cell types, whereby methylation is reduced and hydroxymethylation gained during the neurogenic lineage concurrently with up-regulation of pioneer transcription factors and activation of enhancers for neurogenic genes.


Assuntos
5-Metilcitosina/análogos & derivados , Metilação de DNA/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , 5-Metilcitosina/fisiologia , Animais , Proteína 9 Associada à CRISPR/metabolismo , Caderinas/metabolismo , Diferenciação Celular , Linhagem da Célula/fisiologia , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Epigênese Genética/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Fusão Oncogênica/metabolismo , Gravidez , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição , Transcriptoma
19.
EMBO J ; 38(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30643018

RESUMO

Adult neurogenesis is involved in cognitive performance but studies that manipulated this process to improve brain function are scarce. Here, we characterized a genetic mouse model in which neural stem cells (NSC) of the subventricular zone (SVZ) were temporarily expanded by conditional expression of the cell cycle regulators Cdk4/cyclinD1, thus increasing neurogenesis. We found that supernumerary neurons matured and integrated in the olfactory bulb similarly to physiologically generated newborn neurons displaying a correct expression of molecular markers, morphology and electrophysiological activity. Olfactory performance upon increased neurogenesis was unchanged when mice were tested on relatively easy tasks using distinct odor stimuli. In contrast, intriguingly, increasing neurogenesis improved the discrimination ability of mice when challenged with a difficult task using mixtures of highly similar odorants. Together, our study provides a mammalian model to control the expansion of somatic stem cells that can in principle be applied to any tissue for basic research and models of therapy. By applying this to NSC of the SVZ, we highlighted the importance of adult neurogenesis to specifically improve performance in a challenging olfactory task.


Assuntos
Aprendizagem por Discriminação , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Odorantes/análise , Bulbo Olfatório/fisiologia , Animais , Ciclina D1/fisiologia , Quinase 4 Dependente de Ciclina/fisiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos
20.
Nucleic Acids Res ; 47(1): 168-183, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30329130

RESUMO

Cortical development is controlled by transcriptional programs, which are orchestrated by transcription factors. Yet, stable inheritance of spatio-temporal activity of factors influencing cell fate and localization in different layers is only partly understood. Here we find that deletion of Dot1l in the murine telencephalon leads to cortical layering defects, indicating DOT1L activity and chromatin methylation at H3K79 impact on the cell cycle, and influence transcriptional programs conferring upper layer identity in early progenitors. Specifically, DOT1L prevents premature differentiation by increasing expression of genes that regulate asymmetric cell division (Vangl2, Cenpj). Loss of DOT1L results in reduced numbers of progenitors expressing genes including SoxB1 gene family members. Loss of DOT1L also leads to altered cortical distribution of deep layer neurons that express either TBR1, CTIP2 or SOX5, and less activation of transcriptional programs that are characteristic for upper layer neurons (Satb2, Pou3f3, Cux2, SoxC family members). Data from three different mouse models suggest that DOT1L balances transcriptional programs necessary for proper neuronal composition and distribution in the six cortical layers. Furthermore, because loss of DOT1L in the pre-neurogenic phase of development impairs specifically generation of SATB2-expressing upper layer neurons, our data suggest that DOT1L primes upper layer identity in cortical progenitors.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/genética , Metiltransferases/genética , Neurogênese/genética , Neurônios/metabolismo , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Divisão Celular/genética , Proliferação de Células/genética , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase , Metilação , Camundongos , Neurônios/patologia , Proteínas Repressoras/genética , Fatores de Transcrição SOXD/genética , Proteínas com Domínio T , Telencéfalo/crescimento & desenvolvimento , Telencéfalo/metabolismo , Telencéfalo/patologia , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...